

THE VIRGINIA COMMONWEALTH UNIVERSITY

## **SCHOOL OF BUSINESS & ENGINEERING**

RICHMOND, VIRGINIA







PRESENTED BY:

LORI E. FARLEY

THE VIRGINIA COMMONWEALTH UNIVERSITY

### SCHOOL OF BUSINESS & ENGINEERING

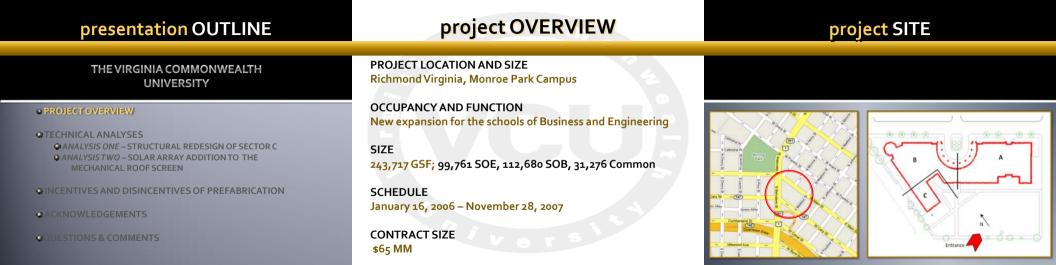
RICHMOND, VIRGINIA



#### presentation OUTLINE

■ PROJECT OVERVIEW

@TECHNICAL ANALYSES


ΦΑΝΑLYSIS ONE – STRUCTURAL REDESIGN OF SECTOR C
ΦΑΝΑLYSIS TWO – SOLAR ARRAY ADDITION TO THE
MECHANICAL ROOF SCREEN

□ INCENTIVES AND DISINCENTIVES OF PREFABRICATION

■ ACKNOWLEDGEMENTS

QUESTIONS & COMMENTS







### project OVERVIEW

# THE VIRGINIA COMMONWEALTH UNIVERSITY



#### project FEATURES

2-Full Height Atriums

Research Laboratories

Cafés and Lounge Areas

Faculty Offices and Classrooms

Auditoriums and Lecture Halls

Specialized Team-Building Classrooms

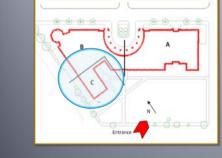


#### analysis ONE structural ANALYSIS presentation OUTLINE structural redesign of SECTOR C THE VIRGINIA COMMONWEALTH REDESIGN OF SECTOR C UNIVERSITY **PROPOSAL** • PROJECT OVERVIEW **FUNCTION** Change the Structural System to Steel Laboratories and OTECHNICAL ANALYSES **Faculty Offices** ● ANALYSIS ONE – STRUCTURAL REDESIGN OF SECTOR C • ANALYSIS TWO - SOLAR ARRAY ADDITION TO THE **GOALS MECHANICAL ROOF SCREEN AS-BUILT STRUCTURE** Improve Constructability Concrete **Schedule Compression OINCENTIVES AND DISINCENTIVES OF PREFABRICATION Cost Savings** • ACKNOWLEDGEMENTS **QUESTIONS & COMMENTS**

# structural ANALYSIS REDESIGN OF SECTOR C

# re-design METHODOLOGY

analysis ONE


- Review as-built structure
  - Bay Sizes

  - Column Locations •Square Footages and Floor to Floor Heights
- •Input Grid Into RAM STRUCTURAL SYSTEM
  - •Lateral Frames No Bracing
  - •Vulcraft Decking 4-inch, 4,000 psi NW Concrete
- •Input Design Loads

# REDESIGN OF SECTOR C

| OCCUPANCY                                 | DESIGN LOAD                |
|-------------------------------------------|----------------------------|
| Roof                                      | 20 PSF                     |
| Offices                                   | 50 PSF + 20 PSF Partitions |
| Corridors                                 | 100 PSF                    |
| Research Laboratories – First Floor       | 125 PSF                    |
| Research Laboratories – Above First Floor | 100 PSF                    |

structural ANALYSIS



# structural ANALYSIS

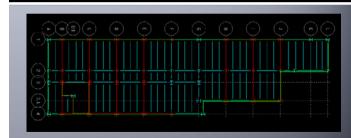
PERSPECITIVE OF THE STEEL

# 

W12x14 (10)

TYPICAL BAY 21' x 24'

cost COMPARISON


re-design RESULTS

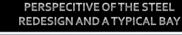
| COST            | OMPARISON S    | SUMMARY OF SECT | FOR C          |
|-----------------|----------------|-----------------|----------------|
| STEEL           |                | CONC            | RETE           |
| Beams & Girders | \$341,151.67   | Beams & Girders | \$778,461.91   |
| Columns         | \$252,897.98   | Columns         | \$404,606.99   |
| Fire Protection | \$90,000.00    | Joists          | \$406,531.90   |
| Fabrication     | \$456,000.00   |                 |                |
| TOTAL           | \$1,140,048.65 | TOTAL           | \$1,589,600.80 |

Savings: \$449,552

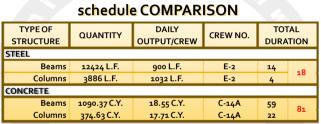
PLAN VIEW OF STEEL REDESIGN
TYPICAL FOR FLOORS 2-ROOF

structural ANALYSIS




# structural ANALYSIS

# re-design RESULTS


structural ANALYSIS

PLAN VIEW OF STEEL REDESIGN

TYPICAL FOR FLOORS 2-ROOF













W12x14 (10)

W12x14 (10)

# structural ANALYSIS PERSPECITIVE OF THE STEEL



W12x14 (10)

TYPICAL BAY 21' x 24'

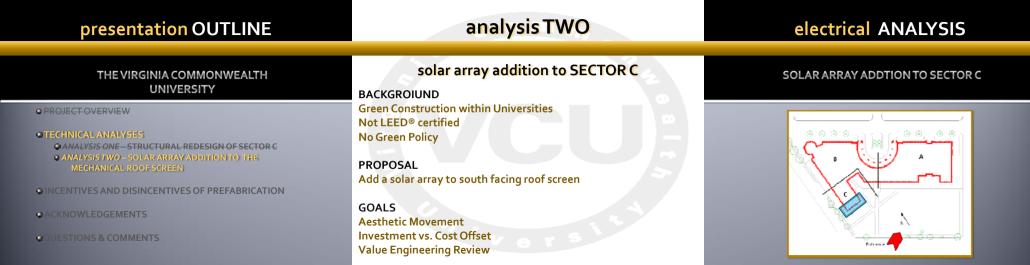
# constructability REVIEW

re-design RESULTS

#### CIZE

CRANE SIZE

No larger members when compared to sectors A and B


Re-use cranes from erection of sectors A and B

PLENUM SPACE
Concrete beams are larger than the steel beams - 24" vs. 18"
Smoother coordination between MEP trades

# TYPICAL FOR FLOORS 2-ROOF

structural ANALYSIS

PLAN VIEW OF STEEL REDESIGN



#### electrical ANALYSIS

# analysis TWO

# electrical ANALYSIS

#### PRODUCT SELCTION

Maximum Power

Voltage at Maximum

Open-Circuit Voltage

Current at Maximum

Solar Cells Maximum System Voltage

Dimensions

Weight

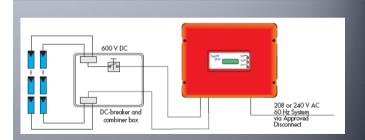
SX 3195



#### design METHODOLOGY

MECHANICAL ROOF SCREEN (southern pitch)

39.5°Tilt 57' by 27.5'


100 Panel Array

5 Rows of 20 Panels 19 kW array

#### **GRID CONNECTION**

20 Panels connected in series (maximum 600V by NEC) 5 – 3800 Watt Inverters (one inverter per row of panels)

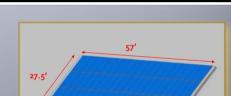
#### SIMPLIFIED WIRING DIAGRAM



# electrical ANALYSIS PANEL BOARD LOADING Single Phase



design RESULSTS


INVERTER DATA AND DEMANDS

Each inverter requires 2 "spare" locations Need a panel board with 10 "spares"

#### PANEL BOARD LOCATION

Electrical Room on 4th Floor

Panel Board P2N3A4 - Close to the Array PANEL BOARD LOADINGS 3.8 kW = (2) 1.9 kW Loading on Panel Board per Inverter



electrical ANALYSIS

CONCEPTUAL VIEW OF ARRAY

LOAD DISCRIPTION

фА фВ фС 2#12AWG 1#12AWG 2#12AWG 2#12AWG 1#12AWG 2#12AWG

2#12AWG

#### electrical ANALYSIS

## design RESULTS

#### electrical ANALYSIS

# INTERPOLATED SOLAR DATA FOR RICHMOND, VIRGINIA

|   |   |      | ANG | GLED S | URFAC | E DATA | A (kWł | n/m²da | ay) FOI | R RICH | MONE | , VA |      |      |
|---|---|------|-----|--------|-------|--------|--------|--------|---------|--------|------|------|------|------|
|   |   | JAN  | FEB | MAR    | APR   | MAY    | JUN    | JUL    | AUG     | SEPT   | ОСТ  | NOV  | DEC  | AVG  |
| ı | S | 3.29 | 3.9 | 4.57   | 5.05  | 5.21   | 5.40   | 4.85   | 5.10    | 4.74   | 4.30 | 3.54 | 3.02 | 4.47 |

- ·A power of 190 W (maximum power)
- ·A voltage of 30.6 V (open-circuit voltage)
- ·The corresponding days/month
- ·An average price of \$0.09/kWh
- ·1.4 lbs of CO<sub>2</sub>/kWh

#### estimated SAVINGS

|      | SOUTHERN     | I PITCH                           |
|------|--------------|-----------------------------------|
|      | SAVINGS PE   | R YEAR                            |
| MO.  | SAVINGS (\$) | SAVINGS (LBS OF CO <sub>2</sub> ) |
| JAN  | \$190.31     | 2960.31                           |
| FEB  | \$186.73     | 2904.72                           |
| MAR  | \$242.26     | 3768.42                           |
| APR  | \$259.07     | 4029.90                           |
| MAY  | \$276.18     | 4296.17                           |
| JUN  | \$277.02     | 4309.20                           |
| JUL  | \$257.10     | 3999.31                           |
| AUG  | \$270.35     | 4205.46                           |
| SEPT | \$243.16     | 3782.52                           |
| OCT  | \$227.94     | 3545.78                           |
| NOV  | \$181.60     | 2824.92                           |
| DEC  | \$160.09     | 2490.29                           |
| AVG  | \$230.98     | 3593.08                           |
| TOT  | \$2771.81    | 43,117lbs                         |
|      | · ·          |                                   |

ELECTRIC SAVINGS \$2770 PERYEAR

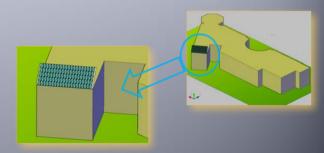
SAVINGS OF CO<sub>2</sub> EMISSIONS 43,117 LBS PERYEAR

#### MATERIALS SAVINGS

| ESTIMATED<br>MATERIALS<br>SAVINGS | Total SF | Material Cost<br>per SF | Total<br>Material<br>Cost | Installation<br>Cost per SF | Total<br>Installation<br>Cost | TOTAL<br>SAVINGS |
|-----------------------------------|----------|-------------------------|---------------------------|-----------------------------|-------------------------------|------------------|
| Pre-Formed<br>Metal Roofing       | 1567.5   | \$2.86                  | \$4,483.05                | \$1.88                      | \$2,946.9                     | \$7,429.95       |
| Formed Metal<br>Roofing           | 1567.5   | \$14.35                 | \$22,493.62               | \$4.71                      | \$7,382.93                    | \$29,876.55      |
| Treated Wood<br>Blocking          |          |                         |                           |                             |                               | \$1000.00        |
|                                   |          |                         | TOTA                      | L MATERIA                   | L SAVINGS                     | \$38,306.5       |

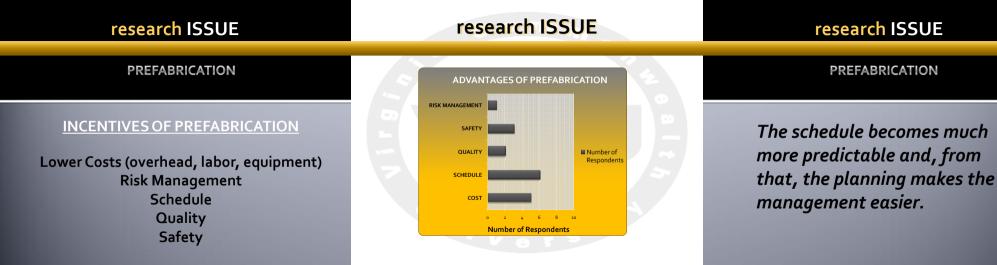
# constructability review

#### Panel Weights - Lightweight Design Fixed-Mounted - Cheaper Alternative Panels are Wired for Connection Low Maintenance **Utility Interconnection Requirements Roof Penetrations**


# estimated INVESTMENT

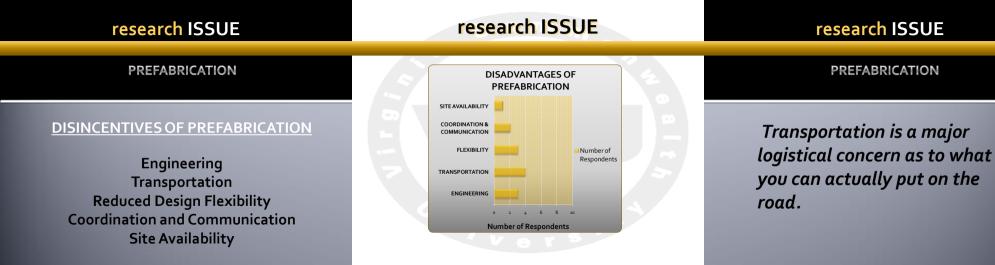
design RESULTS

|              | INVES      | TMENT          |           |
|--------------|------------|----------------|-----------|
| ITEM         | QTY.       | COST/UNIT      | TOTAL     |
| Solar Panels | 100 – 190W | \$6.00/W       | \$114,000 |
| Inverters    | 5 – 3800U  | \$2,500.00 ea. | \$12,500  |
| Savings      |            |                | -38,306   |
| TOTAL        |            |                | \$88,194  |


#### CONCEPTUAL VIEW OF ARRAY ON THE BUILDING

electrical ANALYSIS










PREFABRICATION The schedule becomes much

research ISSUE





# research ISSUE PREFABRICATION AT VCU

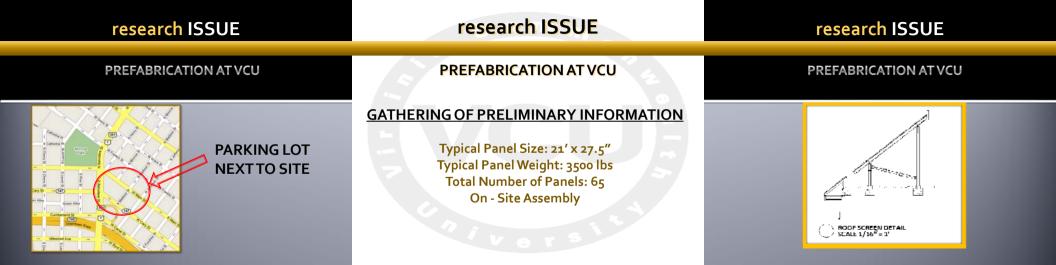
# PREFABRICATION AT VCU

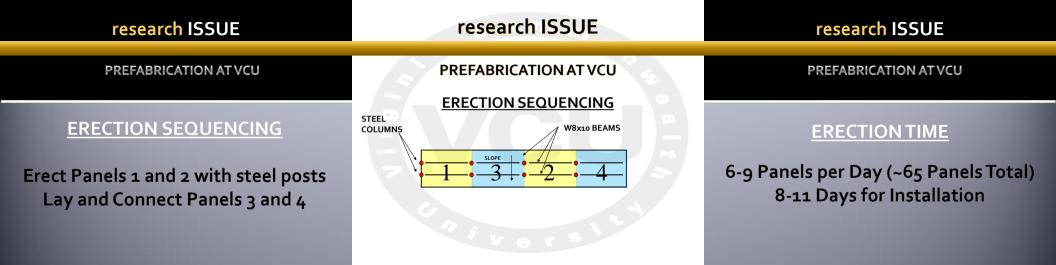
research ISSUE



research ISSUE

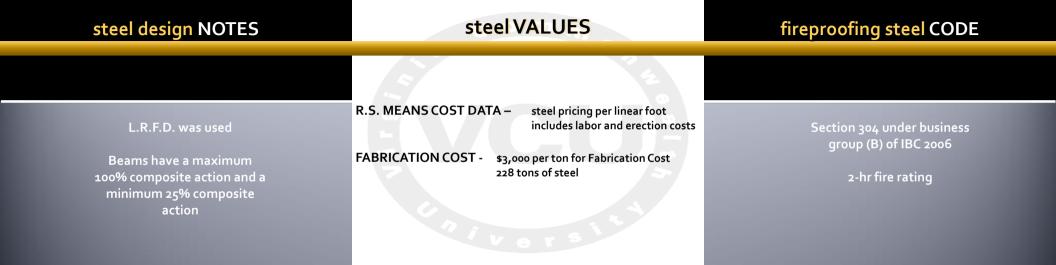
PREFABRICATION AT VCU


# **IMPLEMENTATION OF PREFABRICATION**


The Mechanical Roof Screen Safety Concerns **Time Consuming** Maneuverability Around Mechanical Equipment Damage to the Finished Roof






| research ISSUE        | research ISSUE                                                    | research ISSUE        |
|-----------------------|-------------------------------------------------------------------|-----------------------|
| PREFABRICATION AT VCU | PREFABRICATION AT VCU                                             | PREFABRICATION AT VCU |
|                       | A FRAME-WORK FOR DECISION MAKING Effectively Applying the Drivers |                       |







# **ACKNOWLEDGEMENTS** ISEC, INC. **QUESTIONS QUESTIONS** GILBANE BUILDING COMPANY **AE FACULTY FELLOW STUDENTS** FRIENDS AND FAMILY



#### adjusted solar DATA

# savings CALCULATIONS

# additional solar CALCULATIONS

|             | ADJUSTED AVERAGE SOLAR DATA FOR RICHMOND VIRGINIA - kW/hm^2day |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------|----------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Direction   | Angle                                                          | JAN  | FEB  | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEPT | ост  | NOV  | DEC  | AVG  |
| North Pitch | 39.5*                                                          | 1.84 | 2.48 | 3.33 | 4.19 | 4.78 | 5.19 | 4.53 | 4.43 | 3.65 | 2.85 | 2.04 | 1.61 | 3.46 |
| South Pitch | 39.5*                                                          | 3.29 | 3.9  | 4.57 | 5.05 | 5.21 | 5.4  | 4.85 | 5.1  | 4.74 | 4.3  | 3.54 | 3.02 | 4.47 |
| East Pitch  | 39.5*                                                          | 2.27 | 3.04 | 4.04 | 5.02 | 5.55 | 5.95 | 5.29 | 5.22 | 4.41 | 3.49 | 2.52 | 2.03 | 4.12 |
| West Pitch  | 39.5*                                                          | 2.29 | 3.03 | 4.04 | 5    | 5.52 | 5.91 | 5.24 | 5.19 | 4.39 | 3.47 | 2.52 | 2.03 | 4.11 |
| NW Pitch    | 39.5*                                                          | 2.06 | 2.75 | 3.68 | 4.6  | 5.15 | 5.55 | 4.89 | 4.81 | 4.02 | 3.16 | 2.28 | 1.82 | 3.78 |
| SW Pitch    | 39.5*                                                          | 2.79 | 3.46 | 4.3  | 5.03 | 5.36 | 5.66 | 5.05 | 5.14 | 4.57 | 3.89 | 3.03 | 2.53 | 4.29 |
| NE Pitch    | 39.5*                                                          | 2.05 | 2.76 | 3.68 | 4.61 | 5.17 | 5.57 | 4.91 | 4.82 | 4.03 | 3.17 | 2.28 | 1.82 | 3.79 |
| CE Ditale   | 20.5*                                                          | 2.70 | 2.47 | 4.2  | E 02 | E 20 | E 60 | E 07 | E 16 | AFO  | 2.00 | 2.02 | 2.52 | 4.2  |

| Month           | kW/h*m^2*day  | kW/h               | Savings Per Month            | Savings per Mon<br>(lbs CO2) |
|-----------------|---------------|--------------------|------------------------------|------------------------------|
| JAN             | 3.59          | 2114.51            | \$190.31                     | 2960.31                      |
| FEB             | 3.9           | 2074.80            | \$186.73                     | 2904.72                      |
| MAR             | 4.57          | 2691.73            | \$242.26                     | 3768.42                      |
| APR             | 5.05          | 2878.50            | \$259.07                     | 4029.90                      |
| MAY             | 5.21          | 3068.69            | \$276.18                     | 4296.17                      |
| JUN             | 5.4           | 3078.00            | \$277.02                     | 4309.20                      |
| JUL             | 4.85          | 2856.65            | \$257.10                     | 3999.31                      |
| AUG             | 5.1           | 3003.90            | \$270.35                     | 4205.46                      |
| SEPT            | 4.74          | 2701.80            | \$243.16                     | 3782.52                      |
| ОСТ             | 4.3           | 2532.70            | \$227.94                     | 3545.78                      |
| NOV             | 3.54          | 2017.80            | \$181.60                     | 2824.92                      |
| DEC             | 3.02          | 1778.78            | \$160.09                     | 2490.29                      |
| AVG             | 4.47          | 2566.49            | \$230.98                     | 3593.08                      |
|                 | TOTAL SAVINGS | PER YEAR           | \$2,771.81                   | 43117.00                     |
|                 |               |                    |                              |                              |
|                 |               | Vaules             |                              |                              |
| Total<br>Panels | Maximum Power | Total kW of System | Cost of Electricty per<br>kW | CO2 lbs per kWh              |
| 100             | 190 W         | 19                 | \$0.09                       | 1.4                          |

No. of Panels in Series = 600V/30.6V/panel = 19.6 Panels

No. of Inverters = (100 panels\*190W)/3800W/Inverter = 5 Inverters

Maximum Panel Loading =  $(225A)(208V)(3)^{1/2} = 81.1 \, kW$ 

Total Inverter Loading on Panel Board = (5 inverters)(3.8 kW) = 19 kW

81.1 kW > 19 kW

Circuit Breaker Size = 3800W/208 = 18.27A use 20A Circuit Breaker